Exam. Code : 103201
 Subject Code : 1027

B.A./B.Sc. Semester-I

MATHEMATICS
Paper-II
(Calculus \& Trigonometry)

Time Allowed- 3 Hours]

[Maximum Marks-50
Note :-Attempt FIVE questions in all selecting at least TWO questions from each section.

SECTION-A

I. (a) Give an example to show that the set Q of rationals does not possess the least upper bound property.
(b) If

$$
|x-3|<2, \text { then } \frac{x^{2}+2 x-2}{x+3} \in\left(\frac{1}{8}, \frac{17}{4}\right) . \quad 5,5
$$

II. (a) Prove that
$\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist .
(b) Show that $f(x)=\frac{1}{x}$ is continuous in $(0,1]$, but it is not uniformly continuous on (0,1]. 5,5
III. (a) Differentiate

$$
\frac{x \sqrt{x^{2}-a^{2}}}{2}-\frac{a^{2}}{2} \cosh ^{-1} \frac{x}{a} \text { w.r.t. } x
$$

40(2116)/RRA-4348
a2zpapers.com
(b) If

$$
2 y=x\left(1+\frac{d y}{d x}\right), \quad \text { prove that } \frac{d^{2} y}{d x^{2}} \text { is constant }
$$

(c) If

$$
\begin{aligned}
& y=\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]^{2}, \text { prove that } \\
& \left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+n^{2} y_{n}=0
\end{aligned}
$$

2,3,5
IV. (a) State and prove Taylor's Theorem with Cauchy's form of Remainder.
(b) Prove that

$$
\begin{align*}
& f\left(\frac{x^{2}}{1+x}\right)=f(x)-\frac{x}{1+x} f^{\prime}(x)+\left(\frac{x}{1+x}\right)^{2} \cdot \frac{1}{2!} f^{\prime \prime}(x) \\
& -\left(\frac{x}{1+x}\right)^{3} \cdot \frac{1}{3!} f^{\prime \prime \prime}(x)+\ldots \infty
\end{align*}
$$

V. (a) Evaluate

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)^{\tan x}
$$

(b) Show that the set $\left\{\frac{2+x}{1+x}, x<0\right.$ and $\left.x \neq-1\right\}$ is neither bounded above nor bounded below. 5,5

SECTION-B

VI. (a) If $\cos \alpha+2 \cos \beta+3 \cos \gamma=0$ and $\sin \alpha+$ $2 \sin \beta+3 \sin \gamma=0$, prove that $\cos 3 \alpha+$ $8 \cos 3 \beta+27 \cos 3 \gamma=18 \cos (\alpha+\beta+\gamma)$ and $\sin 3 \alpha+8 \sin 3 \beta+27 \sin$ $3 \gamma=18 \sin (\alpha+\beta+\gamma)$.
(b) Solve the equation $\mathrm{x}^{12}-1=0$ and find which of its roots satisfy the equation $x^{4}+x^{2}+1=0 . \quad 5,5$
VII. (a) Prove that $\cos ^{6} \theta \sin ^{4} \theta=2^{-9}[\cos 10 \theta+$ $2 \cos 8 \theta-3 \cos 6 \theta-8 \cos 4 \theta+2 \cos 2 \theta+6]$
(b) If $\cos ^{-1}(u+i v)=\alpha+i \beta$, prove that $\cos ^{2} \alpha$ and $\cosh ^{2} \beta$, are the roots of the equation $x^{2}-\left(1+u^{2}+v^{2}\right) x+u^{2}=0$.
VIII. (a) If α and β are imaginary cube roots of unity, then show that

$$
\alpha e^{n \alpha}+\beta e^{n \beta}=-e^{\frac{-n}{2}}\left[\cos \frac{\sqrt{3}}{2} n+\sqrt{3} \sin \frac{\sqrt{3}}{2} n\right] .
$$

(b) If $A+i B=C \tan [x+i y]$, show that $\tan 2 \mathrm{x}=\frac{2 \mathrm{CA}}{\mathrm{C}^{2}-\mathrm{A}^{2}-\mathrm{B}^{2}}$ and $\tanh 2 \mathrm{y}=\frac{2 \mathrm{CB}}{\mathrm{C}^{2}+\mathrm{A}^{2}+\mathrm{B}^{2}}$.
[X. (a) If $\tan (\alpha+i \beta)=i, \alpha$ and β being real, prove that α is indeterminate and β is infinite.
(b) Sum to n terms the series:

$$
\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}+\ldots
$$

Also deduce the sum to infinite terms.
5,5
X. (a) If

$$
\begin{aligned}
& -(\sqrt{2}-1)<x<\sqrt{2}-1, \text { b show that } \\
& 2\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}--\right)=\frac{2 x}{1-x^{2}}-\frac{1}{3}\left(\frac{2 x}{1-x^{2}}\right)^{3} \\
& +\frac{1}{5}\left(\frac{2 x}{1-x^{2}}\right)^{5}-\ldots \ldots
\end{aligned}
$$

(b) State and Prove DE MOIVRE'S Theorem for Rational index.

5,5

